Downregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/β-catenin signaling pathway.
نویسندگان
چکیده
Maternally expressed gene 3 (Meg3) has been shown to promote tumor progression. However, the role of Meg3 in the development of a chemoresistant phenotype of human lung cancer has remains. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression of Meg3. Flow cytometric analysis and MTT assay were also used to investigate the cell cycle and apoptosis. The present study detected that the expression levels of Meg3 were significantly lower in cisplatin‑resistant A549/DDP lung cancer cells, compared with those in parental A549 cells. Furthermore, upregulation of Meg3 was able to re‑sensitize the A549/DDP cells to cisplatin in vitro. Whereas downregulation of Meg3, by RNA interference, decreased the sensitivity of A549 cells to cisplatin. The results of the present study also demonstrated that the Meg3‑mediated chemosensitivity enhancement was associated with the induction of cell-cycle arrest and increased apoptosis, through regulation of p53, β‑catenin and survivin, which is a target gene of the WNT/β‑catenin signaling pathway. In conclusion, these results suggested that Meg3 may have a crucial role in the development of cisplatin resistance in non-small cell lung cancer.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کاملRe-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia
Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2015